翻訳と辞書 |
Direct metal laser sintering : ウィキペディア英語版 | Direct metal laser sintering Direct metal laser sintering (DMLS) is an additive manufacturing technique that uses a Yb (Ytterbium) fibre laser fired into a bed of powdered metal, aiming the laser automatically at points in space defined by a 3D model, melting or rather, welding the material together to create a solid structure. DMLS was developed by the EOS firm of Munich, Germany. The DMLS process involves use of a 3D CAD model whereby a .stl file is created and sent to the machine’s software. A technician works with this 3D model to properly orient the geometry for part building and adds supports structure as appropriate. Once this "build file" has been completed, it is "sliced" into the layer thickness the machine will build in and downloaded to the DMLS machine allowing the build to begin. The DMLS machine uses a high-powered 200 watt Yb-fiber optic laser. Inside the build chamber area, there is a material dispensing platform and a build platform along with a recoater blade used to move new powder over the build platform. The technology fuses metal powder into a solid part by melting it locally using the focused laser beam. Parts are built up additively layer by layer, typically using layers 20 micrometers thick. This process allows for highly complex geometries to be created directly from the 3D CAD data, fully automatically, in a relatively short time and without any tooling. DMLS is a net-shape process, producing parts with high accuracy and detail resolution, good surface quality and excellent mechanical properties. == Benefits ==
DMLS has many benefits over traditional manufacturing techniques. The ability to quickly produce a unique part is the most obvious because no special tooling is required and parts can be built in a matter of hours. Additionally, DMLS allows for more rigorous testing of prototypes. Since DMLS can use most alloys, prototypes can now be functional hardware made out of the same material as production components. DMLS is also one of the few additive manufacturing technologies being used in production. Since the components are built layer by layer, it is possible to design internal features and passages that could not be cast or otherwise machined. Complex geometries and assemblies with multiple components can be simplified to fewer parts with a more cost effective assembly. DMLS does not require special tooling like castings, so it is convenient for short production runs.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Direct metal laser sintering」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|